

MODEL SPECIFICATIONS AND FEATURES Power Class 4005

Horsepower (Hp) at 460v

4010

5

4013

7.5

4018

10

4032

20

4042

25

4048

30

4024

15

		5	7.5	10	15	20	25	30			
Output Current In (A)	5.0	10	13	18	24	32	42	48			
Max. Current 1min (A)	7.6	15	20	27	36	48	63	72			
Overloadability	1.5 x In,	1min/10min									
Max. Output Voltage	Equals to	o supply volta	age								
Supply											
Supply Voltage	380-500	Vac									
Allowable Voltage Fluctuation	+/- 10%										
Nominal Supply Frequency	50/60Hz	+/- 5%									
I/O Functions											
Digital Inputs	S1, S2, DID3, DID4, DID5: 42 240Vac; 15mA										
Analog Input	Ain: 0+10V: 200kΩ load; accuracy 0.5%										
Analog Output		Aout: 4 20mA: accuracy 0.5%									
Relay Outputs	ROD1 (br	ake contacto	r), ROA1 (pro	ogrammable) r	elay outputs ra	ited max. 250	IVAC, 8A				
Control Features											
Control Method	Open leer	o vector contr	el.								
Frequency Control Range	0 250H		UI								
Frequency Command				t II 0	10) (and a large state of the state					
Limit Switch Functions				ontroller or 0.		ynai					
Braking Torque	150%	n and stop lim	nit configurati	ons for both di	rections						
		/ /C -motor	nominal alia)								
Speed Control Range Speed Accuracy	13	% (S _N =motor		e 10 100%							
Speed Accuracy		tor nominal s									
			lip at speed t								
Berlaufere											
Protections											
Motor Overload Protection	Thermistor			tection using a							
Motor Overload Protection Overload Protection	Thermistor Fault is del	tected if the o	current mome	ntection using a							
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse	Thermistor Fault is de Fault is de	tected if the o	current mome voltage drops	otection using a entarily exceed s below 333V							
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection	Thermistor Fault is de Fault is de Fault is de	tected if the o tected if DC v tected if DC v	current mome voltage drops	otection using a entarily exceed s below 333V							
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss	Thermistor Fault is de Fault is de Fault is de Immediate	tected if the of tected if DC v tected if DC v fault stop	current mome voltage drops voltage excee	otection using a antarily exceed a below 333V eds 911V							
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection	Thermistor Fault is de Fault is de Fault is de Immediate	tected if the o tected if DC v tected if DC v	current mome voltage drops voltage excee	otection using a antarily exceed a below 333V eds 911V							
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu	tected if the of tected if DC v tected if DC v fault stop re sensor on	current mome voltage drops voltage excee the heat sink	otection using a antarily exceed a below 333V eds 911V	Is 280% or RN						
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit brea	tected if the of tected if DC v tected if DC v fault stop re sensor on	current mome voltage drops voltage excee the heat sink d on XS pane	otection using a entarily exceed s below 333V eds 911V	Is 280% or RN						
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake Ground Fault	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit brea	tected if the o tected if DC v tected if DC v fault stop re sensor on aker included	current mome voltage drops voltage excee the heat sink d on XS pane	otection using a entarily exceed s below 333V eds 911V	Is 280% or RN						
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit brea	tected if the o tected if DC v tected if DC v fault stop re sensor on aker included	current mome voltage drops voltage excee the heat sink d on XS pane	otection using a entarily exceed s below 333V eds 911V	Is 280% or RN						
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake Ground Fault	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit bre Provided b	tected if the o tected if DC v tected if DC v fault stop re sensor on aker included by electronic o	current mome voltage drops voltage exceed the heat sink d on XS pane circuitry	otection using a entarily exceed s below 333V eds 911V	Is 280% or RM						
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake Ground Fault Ambient Conditions	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit bre. Provided b	tected if the of tected if DC v fault stop re sensor on aker included b0°C (14°F	current mome voltage drops voltage excee the heat sink d on XS pane circuitry 122°F) for 4	stection using a entarily exceec s below 333V eds 911V c c ils (from 4018	upward)						
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake Ground Fault Ambient Conditions Ambient Temperature Storage Temperature Humidity	Thermistor Fault is de Fault is de Fault is de Fault is de Immediate Temperatu Circuit brei Provided b	tected if the c tected if DC v tected if DC v fault stop re sensor on aker includec so ^o °C (14°F o condensat	current mome voltage drops voltage drops voltage exceed the heat sink d on XS pane circuitry 122°F) for 4 158°F) dry. ion)	offection using entarily exceeds below 333V eds 911V c c is (from 4018 0% Duty Cycle Power on >1h	upward)	S rated curre					
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake Ground Fault Ambient Conditions Ambient Temperature Storage Temperature	Thermistor Fault is de Fault is de Fault is de Fault is de Immediate Temperatu Circuit brei Provided b	tected if the c tected if DC v tected if DC v fault stop re sensor on aker includec so ^o °C (14°F o condensat	current mome voltage drops voltage drops voltage exceed the heat sink d on XS pane circuitry 122°F) for 4 158°F) dry. ion)	otection using a antarily exceec a below 333V ads 911V c is (from 4018 0% Duty Cycle	upward)	S rated curre					
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overdemperature Mechanical Brake Ground Fault Ambient Conditions Ambient Temperature Storage Temperature Humidity	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit bre: Provided b	tected if the c tected if DC v tected if DC v fault stop re sensor on aker includec so ^o °C (14°F o condensat	current mome voltage drops voltage drops voltage exceed the heat sink d on XS pane circuitry 	offection using entarily exceeds below 333V eds 911V c c is (from 4018 0% Duty Cycle Power on >1h	upward)	S rated curre					
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake Ground Fault Ambient Conditions Ambient Temperature Storage Temperature Humidity	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit bre: Provided b -10°C +5 -40°C +5 -40°C +5 -40°C +5	tected if the c tected if DC v tected if DC v fault stop resensor on aker includec by electronic of 50°C (14°F 10°C (-31°F 10 condensat 1000m at In. A	current mome voltage drops voltage exceed the heat sink d on XS pane circuitry 122°F) for 4 . 158°F) dry. ion) Above 1000m actory	offection using entarily exceeds below 333V eds 911V c c is (from 4018 0% Duty Cycle Power on >1h	upward) o r per year. 1% per each 1	S rated curre					
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage / Blown Fuse Inverter Overtemperature Inverter Overtemperature Ground Fault Ambient Conditions Ambient Temperature Storage Temperature Humidity Altitude	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit bre Provided b -10°C +7 -40°C +7 <95%RH (r Maximum 1 Above 300 Operation:	tected if the c tected if DC v tected if DC v fault stop re sensor on aker includec sorC (14°F ro°C (-31°F ro°C (-31°F no condensat 1000m at In. A Dm: consult fa maximum dig	current mome voltage drops voltage exceed the heat sink d on XS pane circuitry 122°F) for 4 158°F) dry. ion) Above 1000n actory splacement a	tection using a entarily exceed below 333V ads 911V c is (from 4018 b) (from 4018 b) (from 4018 c) b) Duty Cycle Power on >1h n: In. reduces	upward) r per year. 1% per each 1 at 2-9Hz	S rated curre					
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake Ground Fault Ambient Conditions Ambient Conditions Storage Temperature Humidity Altitude	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit bre Provided b -10°C +7 -40°C +7 <95%RH (r Maximum 1 Above 300 Operation:	tected if the c tected if DC v tected if DC v fault stop re sensor on aker includec sorC (14°F ro°C (-31°F ro°C (-31°F no condensat 1000m at In. A Dm: consult fa maximum dig	current mome voltage drops voltage exceed the heat sink d on XS pane circuitry 122°F) for 4 158°F) dry. ion) Above 1000n actory splacement a	otection using a ntarify exceec- a below 333V eds 911V c is (from 4018) 0% Duty Cycle Power on >1h n: In, reduces mplitude 3mm	upward) r per year. 1% per each 1 at 2-9Hz	S rated curre					
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake Ground Fault Ambient Conditions Ambient Conditions Storage Temperature Humidity Altitude	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit bre Provided b -10°C +7 -40°C +7 <95%RH (r Maximum 1 Above 300 Operation:	tected if the c tected if DC v tected if DC v fault stop re sensor on aker includec y electronic of 50°C (14°F r0°C (-31°F no condensat 1000m at In. A Dm: consult fa maximum dig	current mome voltage drops voltage exceed the heat sink d on XS pane circuitry 122°F) for 4 158°F) dry. ion) Above 1000n actory splacement a	otection using a ntarify exceec- a below 333V eds 911V c is (from 4018) 0% Duty Cycle Power on >1h n: In, reduces mplitude 3mm	upward) r per year. 1% per each 1 at 2-9Hz	IS rated curre	nt	/ and EMC DI	irectives		
Motor Overload Protection Overload Protection Undervoltage / Blown Fuse Overvoltage Protection Momentary Power Loss Inverter Overtemperature Mechanical Brake Ground Fault Ambient Conditions Ambient Conditions Storage Temperature Humidity Altitude	Thermistor Fault is de Fault is de Fault is de Immediate Temperatu Circuit bre Provided b -10°C +7 -40°C +7 <95%RH (r Maximum 1 Above 300 Operation:	tected if the c tected if DC v tected if DC v fault stop re sensor on aker includec y electronic of 50°C (14°F r0°C (-31°F no condensat 1000m at In. A Dm: consult fa maximum dig	current mome voltage drops voltage excer the heat sink d on XS pane circuitry 122°F) for 4 158°F) dry. ion) Above 1000n actory splacement a amplitude 0.5	otection using a ntarify exceec- a below 333V eds 911V c is (from 4018) 0% Duty Cycle Power on >1h n: In, reduces mplitude 3mm	upward) upward) r per year. 1% per each 1 at 2-9Hz 200Hz	IS rated curre	nt				

Drivecon, Inc. 820 Lakeside Drive, Gurnee, IL 60031-9165 1-800-374-8266 Phone: 847-855-9150 Fax: 847-855-9650

www.drivecon.com drive.sales@drivecon.com

Drivecon Inc. may alter or amend the technical specifications identified herein at any time with or without notice. Rullotin# XS/08

XS Series Crane Inverter Control Systems

Driving The Future

Engineered Systems Master Switches Pendant Stations Radio / Wireless Remote Controls

www.drivecon.com

XS SERIES DRIVES... PROVEN TECHNOLOGY & RELIABILITY... MADE SIMPLE

The XS SERIES is a powerful yet compact and easy to use AC Vector Drive designed for all open-loop trolley traverse and crane travel applications. It is ideal for jib crane motion control and for many other types of material handling equipment.

The slim bookshelf design allows for better heat dissipation, panel layout spacing and weight/cost savings.

The simple I/O card slot provides multifunctional connections to automation, and full programming capabilities.

Drivecon's exclusive crane-specific software offers optimal control over all operating requirements. Plus you get the same level of quality, reliability and safety offered by its "BIG BROTHER" the XT SERIES inverter.

FEATURES

The XS SERIES inherited many features from the XT SERIES such as:

- Integrated AC line reactor & brake chopper for maximum protection (except 4005)
- Flexibility in programing via a simple sevensegment removable LCD panel or via our exclusive NCDrive PC software
- Commonality of I/O cards between all power classes as well as with the XT SERIES
- Low torque and automatic torque maximizer (starting torque > 200%)
- Suitable for multi-motor applications
- Temperature-controlled fan
- Ease of start-up with minimum parameter settings thanks to the true auto-tuning function

PERFORMANCE

- Available from 3 to 30 Hp @ 380-500 VAC
- · Precise vector control speed accuracy
- · Frequency control range up to 250 Hz
- Three control methods available without changes in hardware or software:
- Electronic Stepless Potentiometer Control (EP) - 2 or 3 steps
- Multistep Control (MS) up to 5 steps
- Automation Control (AU) for any device with an analog signal
- Inputs configuration for slow down/stop, end
 of travel limit switch and motor overloads
- Most drive and motor vital features are continuously monitored such as over current, over/under voltage, output phase loss, inverter temperature and many others
- Precise and smooth load positioning through advanced brake control. This feature allows the motor rotation direction to be changed without setting the brake, thus reducing brake wear and shock loads on the crane structure
- Reverse plugging feature allows for a faster response by shortening acceleration/ deceleration ramp times
- Drivecon's XS SERIES drive features a true auto-tuning function

This exclusive feature is the fastest and most reliable way to get your motor running at peak performance. The drive automatically calculates and sets vital parameters. Once auto-tuning is complete, the drive will advise you whether the tuning was successful, thus eliminating any guess-work and poor performance.

SAFETY FEATURES

- Removable display eliminates unauthorized access to drive parameters
- Precise brake control ensures that the motor generates enough torque before releasing the brake, as well as before setting the brake when stopping
- 10 Active faults and 5 historic faults are stored in the drive memory
- Control unit separate and shielded from power supply unit
- Brake to stop feature provides stopping control in case of emergency or sudden obstacles

WORLDWIDE EXPERIENCE...LOCAL SUPPORT & SERVICE

For over a decade, Drivecon has been a supplier of drive systems to crane manufacturers for a wide range of applications including aerospace, automotive, power generation, steel, paper and many other industries.

Drivecon has the products, knowledge, experience and technology to design, fabricate and support all your controls and electrification needs. Our products range from standard and custom Variable Frequency Drive (VFD) panels, motors, radio controls, pendant stations and quick connect festoon systems to complete turnkey modernization projects. Furthermore, we provide 24/7 technical support as well as repairs for all major brands of VFDs.

In addition, Drivecon goes beyond its local capabilities; our global network of world class suppliers, partners and affiliates are specialists in controls and electrification for the overhead materials handling industry.

Drivecon MOTOR DRIVES AND CONTROLS

PRE-ENGINEERED CONTROL PANELS

Drivecon's pre-engineered control panels are the most cost effective and practical solution for your newly built crane or modernization. All panels are designed using specifically selected sub-components to provide a reliable and safe control package.

Standard XS SERIES Panels Include:

- Line reactor (Except 4005)
- Line suppressor (4005 only)
- DB chopper
- 120V input control card
- Brake contactor
- Branch circuit protection
- Motor overload protection
- DB resistors
- All wiring to single terminal strip
- All wires marked at both ends
- NEMA 12 enclosure
- 2 wiring diagrams
- 2 instruction manuals
- 2 year limited warranty
- UL and CSA panels are available upon request

